AMAZON BEST DEALS

https://amzn.to/3Fq4ABu

Sunday, 19 March 2017

MEGHNAD SAHA (1893-1986)

Meghnad Saha was born on 6 October 1893 in Sheoratali village near Dhaka in present day Bangladesh. His father Jagannath Saha was a grocer in the village. After primary education, he was admitted to a middle school that was seven miles away from home. He stayed with a doctor near the school and had to work in that house to pay for his boarding and lodging. Overcoming all these difficulties, he stood first in the Dhaka middle school test, thus securing a Government scholarship and joined the Dhaka Collegiate School in 1905. Great political unrest was prevailing in Bengal, caused by the partition of the province by the British against strong popular opinion. Meghnad Saha was among the few senior students who staged a boycott of the visit by the then Governor, Sir Bampfylde Fuller and as a consequence forfeited his scholarship and had to leave the institution. He then joined the Kisori Lal Jubilee School where he passed the entrance test of the University of Calcutta standing first among students from East Bengal. He graduated from Presidency College with mathematics as his major. He then joined the newly established Science College in Kolkata as a lecturer and pursued his research activities in physics. By 1920, Meghnad Saha had established himself as one of the leading physicists of the time. His theory of high-temperature ionization of elements and its application to stellar atmospheres, as expressed by the Saha equation, is fundamental to modern astrophysics; subsequent development of his ideas has led to increased knowledge of the pressure and temperature distributions of stellar atmospheres. In 1920, Saha went to Imperial College, London and later to Germany. Two years later he returned to India and joined the University of Calcutta as Khaira Professor. He then moved to the University of Allahabad and remained there till 1938, establishing the Science Academy in Allahabad (now known as the National Academy of Science). In 1927, he was elected a Fellow of the Royal Society of London. He returned to the University of Calcutta in 1938 where he introduced nuclear physics into the post-graduate physics curriculum. In 1947 he established the Indian Institute of Nuclear Physics (now known as the Saha Institute of Nuclear Physics). Later in his life, Saha played an active role in the development of scientific institutions throughout India as well as in national economic planning involving technology.?

C V RAMAN

Chandrasekhara Venkata Raman was born at Tiruchirapalli in Tamil Nadu on 7 November 1888. His father was a lecturer in mathematics and physics so from the very beginning he was immersed in an academic atmosphere. Raman’s academic brilliance was established at a very young age. He finished his secondary school education at the tender age of thirteen and entered the Mrs. A.V.N. College at Vishakapatnam, Andhra Pradesh. Two years later he moved to the prestigious Presidency College in Chennai. When he was fifteen, he topped his class to receive his B.A. degree with honours in Physics and English. Raman continued his studies at the Presidency College and when he was barely eighteen, graduated at the top of his class and received his M.A. degree with honours. Raman joined the Indian Audit and Accounts Service and was appointed the Assistant Accountant General in the Finance Department in Kolkata. In Kolkata, he sustained his interest in science by working in the laboratory of the Indian Association for the Cultivation of Science, in his spare time studying the physics of stringed instruments and Indian drums. In 1917, Raman gave up his government job to become the Sir Taraknath Palit Professor of Physics at the Science College of University of Calcutta (1917-33). He made enormous contributions to research in the areas of vibration, sound, musical instruments, ultrasonics, diffraction, photoelectricity, colloidal particles, X-ray diffraction, magnetron, dielectrics, etc. In particular, his work on the scattering of light during this period brought him world-wide recognition.









In 1924 he was elected a Fellow of the Royal Society of London and a year later was honoured with the prestigious Hughes medal from the Royal Society. Four years later, at the joint meeting of the South Indian Science Association and the Science Club of Central College, Bangalore, he announced his discovery of what is now known as the Raman Effect. He was knighted in 1929, and in 1930, became the first Asian scientist to be awarded the Nobel Prize for Physics for his discoveries relating to the scattering of light (the Raman Effect). In 1934, he became the Director of the newly established Indian Institute of Science at Bangalore, where he remained till his retirement. After retirement, he established the Raman Research Institute at Bangalore, where he served as the Director. The Government of India conferred upon him its highest award,the Bharat Ratna in 1954.?

EARN ONLINE BY VIEWING ADDS ( WORK FROM HOME )

 YOU CAN EARN ONLINE BY VIEWING ADDS EVERY DAY Every day you will get 20 adds,you have to view those adds. For viewing those adds the compan...